50万亿(注),现今人人都想搭上“新基建”这辆快车。
现在的问题是,很多行业并不在“新基建”所锚定的7大领域(5G、特高压、城市轨道交通、新能源充电桩、大数据中心、人工智能、工业互联网)之内,如何与这7大领域产生关联,通过本行业的“新基建”完成产业升级,成为破局的关键。
4月29日,有媒体报道,货运自动驾驶企业嬴彻科技宣布已完成1亿美金融资。嬴彻科技的此轮投资中,老股东G7和普洛斯继续跟进。
虽然这是发生在自动驾驶领域的一起融资事件,但放在“新基建”的战略语境下,由投资方G7——中国领先的物联网货运服务平台的身份进行延伸思考,可在一定程度上反映出以G7为代表的物流巨头持续强化其物流数字化基础设施优势的意图。
一、伴随电商而起的快递只是智慧物流的A面
谈到物流,很多人的第一反应或许是由顺丰和“四通一达”这些快递企业所展现出来的强大的“投送”能力。从2013年日均业务量刚刚突破3000万件,到2016年全行业1天可送1亿个包裹,再到2018年天猫双11物流订单超过10亿。以快递为代表的智慧物流已经跑的足够快,足够远。这是不是说明我国的智慧物流伴随着电商行业的发展已经趋向成熟,不需要再搞“新基建”了呢?
答案是否定的。
伴随电商而起的快递只是整个物流产业中的一个组成部分,是智慧物流在B2C领域展现在外界的A面,隐藏在背后的B2B这类更加传统的领域里,行业依然停留在信息化程度低,运营分散的“原始阶段”。
拿B2B大宗领域较典型的煤炭物流场景来举例,由于车货匹配欠佳且调运车辆方式较为粗放(大多仍使用微信或者电话),货运效率低下、拉运时间较长。例如从鄂尔多斯地区运煤炭到曹妃甸港口,需要采用公路+铁路的运输方案,煤炭采购等手续预计花费6小时,车辆协调、排队等候、装卸车时间预计6小时,车辆路途1小时,单趟40公里的煤炭公路运输,从前期等待到运输完毕,卡车司机需要耗费13个小时之久。
以上,我们可以非常明显看到,中国物流行业在B2C领域的A面与B2B领域的B面之间的存在着极大的不均衡。
华夏新供给经济学研究院院长贾康在《“新基建”中智能物流和智能供应链建设已是当务之急》一文中分享了这样一组数据:当前中国物流成本占GDP比重为14.6%,高于全球平均水平11.7%近3个百分点,折为物流成本相对差距,高出了近25%;相比世界排名第一的美国7.2%的比重水平,中国高出了7.4个百分点,折为物流成本的相对差距高出了一倍以上。
菜鸟网络2019年的数据也显示,中国全年物流总费用折合美金在1.75万亿美元,这个数据也超过了美国全年物流总费用的1.49万亿美元。
以上案例与数据显示,无论是比重还是绝对数量,中国物流行业与世界先进水平相比,都有相当大的距离,物流行业A B两面之间存在着极大的不均衡。如果将快递行业的优势进行冲抵,那么物流行业在B2B领域的短板该是有多短?
事实上,关于智慧物流的探索,中国的玩家们一直在努力,针对效率、管理和安全这三个行业普遍存在的痛点,行业中都有大量对应的解决方案,但问题一直没有解决的原因在于其“头痛医头、脚痛医脚”的传统物流基建思路。
一个典型的例子,物流企业针对自己内部管理,会有仓储、运输、车辆、财务等多个管理系统;一个卡车司机完成一趟运输闭环,整个过程可能要用到运力信息撮合、路况禁区查询、过路费计算、车辆管理、车况诊断、财务结算等多个应用。
虽然这些系统和应用能解决对应的问题,但就整个流程而言,由于各个系统和应用就像一个个高耸的烟囱,相互之间数据割裂,缺乏协同,行业的整体效率始终难以提高。
二、智慧物流“新基建”到底应该怎么建?
既然问题已经找出来了,那么智慧物流“新基建”的方向也大致有数了,我们或可从以下三个方面入手。
首先,从场景出发,构建产业链条的数字化底座。
快递行业之所以远远跑在传统物流的前面,其很大原因在于电商巨头们对快递行业的“收编”,一定程度来说,快递并不只是物流行业的一部分,更多的是电商产业链条的一个环节。
在电商产业生态中,所有场景和生产要素都要求数字化,在这个过程中,快递行业可以说是“顺势而为”,也可以说“身不由己”的完成了全链条的数字化基础设施建设或改造。
回到B2B传统物流领域,这也要求物流企业或车队也要基于对场景的理解,构建一个数据可以在各个场景之间通联流转的基础底座,我们可以将其理解为智慧物流的IaaS。
以G7为例,通过将GPS盒子等各类传感器在车队中的普及应用,构建了一张由150万辆物流卡车组成IoT网络,从单一场景出发,多维度的数据收集,进而进化成整个行业的数字化基础设施。
其次,从痛点出发,构建连接管理与运营的平台引擎。
产业链条各生产要素的数据收集回来后,怎么利用?
从满足物流企业和车队老板降本增效这两个最核心需求来看,需要这些数据在内部管理与外部运营这两个领域的各个场景中流转,这样才能提高整体效率,这时我们需要一个连接管理和运营、兼容数字底座和应用的平台引擎,也就是智慧物流的PaaS。
其实行业中也有类似概念的平台系统,但由于对产业链条中的场景理解不够,数字底座的渗透率有限,因而这些平台系统的功能和体验都有非常大的局限性。
G7的做法是通过经营服务平台和资产服务平台这两个平台引擎来解决上述问题。
前者解决车队加油、ETC金融服务、工资、税金、运费结算,甚至后市场的轮胎、润滑油等车队运营一系列日常高频需求的问题;后者给物流企业带来成本结构的改变,以前需要自持车队,如今采用运力租赁的方式,使资产由重变轻,人力成本下降,带来的是经营管理效率的提升。
必须明确,建设智慧物流PaaS中台的核心需要直接指向成本、时效、安全这三个行业长期沉疴的核心痛点。
最后,从体验出发,构建贯穿全场景的物流应用。
上文提到,由于数据的割裂,卡车司机要使用N个应用才能完整的跑完一趟运输闭环,卡车司机的手机容量是否够用暂且不说,光是在各个App中切换,其所谓的数字化体验能有多高大家都能想象。更加糟糕的是,由于数字化基础设施的不完善,运输过程中很多环节还没有上线实现数字化,仍要用“原始”手段才能完成。
理想中的全场景体验是怎样?我们用一个卡车司机的日常工作来作答。
车快没油了,打开App,附近加油站的位置和价格一目了然,一键加油并即时完成线上结算;长时间驾驶后在App上找到最近的司机之家,在那里填饱肚子、洗个热水澡,还能小睡一会;ETC、维修保养、运费结算一系列动作都可以通过App完成,不用随身携带大量现金,也不用留存一堆发票回去报销;行驶过程当中,出现疲劳、打哈欠或打电话等危险动作,智能安全设备会进行实时提醒,如果危险系数过高会触发安全管家进行人工干预,直到风险消失……
总之,司机跑一趟活的全程需求,均可以通过一个应用(平台)来实现。
事实上,物流行业中有部分App应用已经具备了这样的能力,如果将视野放的更广一些,在数字底座和平台引擎的基础上,产业链的每个环节都应有基于各自场景的SaaS应用。
总而言之,智慧物流“新基建”的关键不光在“物流运输”的过程,还应包括上游货主与下游车队、保险公司、能源公司、金融公司等间接服务物流产业的组织与产业链的数字化连接与承载。其中既有基于物联网层面的“硬件”建设,也有基于数据管理和应用“软件”开发。
利康森隆(丹阳)智能机械有限公司已经与各大物流公司合作,专业提供车载称重系统,实时为后端提供检测数据。
利康森隆(丹阳)智能机械有限公司除了生产制造车载称重系统之外,还是一家致力于大吨位深孔贴片轴销式传感器自主研发的高科技公司,拥有生产专用工具与装备,先进的英国贴片技术,本土化价格。